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Abstract-—— A new symmetric formulation of the Hybrid Fi-
nite Element Method (HFEM) is described which combines
clements of the Electric Field Integral Equation (EFIE) and
the Magnectic Field Integral Equation (MFIE) for the ex-
terior region along with the finite element solution for tho
interior problem. The formulation is applied to scattering
by inhomogencous bodies of revolution. To avoid spurious
modes in the interior region a combination of vector and
nodal based finite elements are used. Integral equations in
the exterior region are used to enforce the Sommerfield ra-
diation condition by matching both the tangential electric
and magnetic fields between interior and exterior regions.
Results from this symmetric formulation as well as formu-
lations based soley on the EFIE or MFIE arc compared to
exact scries solutions and integral equation solutions for a
number of examples. The behavior of the symmetric, EFIE,
and MFIE solutions is examined at potential resonant fro-
quencies of the interior and exterior regions, demonstrating
the advantage of this symmetric formulation.

I. INTRODUCTION

Nurmncrical scattering methods have matured from car-
licr more simple solutions of models for conducting bodics
using integral equation methods requiring unknowns only
on the surface of the model[Harrington]. Since then neces-
sarily more attention continues to be placed on scattering
from inhornogenous objects. The enormous practical uses
of diclectric and magnetic materials from substrates and
superstrates of microstrip patch antennas to simple uses as
impedance matching layers makes this modeling of inho-
mogenous problems important. Unfortunately present day
designers are presented with a multitude of analysis tech-
niques and can still be left with choosing a method based
on comprorniscs between modeling accuracy, and the com-
puter demands of run time and memory. Integral equation
methods are known to produce highly accurate results, but
as the modcling accuracy of inhomogneities is increased
they produce a proportionally larger number of unknowns.
This hinders the size of the model due to the computer
demands. At that time approximate methods of truncat-
ing partial diflerential equation methods may be attractive
since local radiation boundary conditions can be applied
that maintain the sparsity of these methods. This may al-
leviate the memory requirements but accuracy can sufler.

So both Integral Equation techniques and partial dif-
ferential solutions based on the Finite Element Method
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(FEM) have advantages and disadvantages. Other par-
tial differential approaches such as Finite Diflerence Time
Domain (FDTD) methods exhibit similar problems to the
Finite Element Method. In order to accurately model the
problem and apply a local boundary condition as an ap-
proximation to the Sommerfield Radiation boundary con-
dition, the mesh surrounding the body grows[Mittra). Re-
cently Lec and Canellaris{Lee] indicate that descretization
error increases with the electrical size of the finite element
mesh, implying that radiation boundary conditions should
be placed close to the body. The mesh size can also grow
if the body is irrcgularly shaped and the applied radiation
condition requires a separable surface. Partial differential
approaches have the advantage that they are relatively sim-
ple to formulate for inhomogenous regions, they avoid the
complicated Green’s functions of other methods, and they
lead to sparse, banded systems.

Many other methods for solving inhomogenous bodies
exist{Mei]. But it is the Hybrid Finite Element Method
(HFEM) that attempts to merge some of the advantages
of both the integral equation methods and the finite el-
ement methods[Morgan,Cangellaris, JinlIFEM]. With this
approach the integral equation mesh used to truncate the
interior finite element region can be made conformal to the
body. Thus the number of unknowns for the exterior re-
gion reverts back to the surface of the body. The sparsity
inside the matrix block representing the finite element con-
tribution to the total system remains, reducing the memory
demands of the interior region. But since the application
of the radiation condition is global in nature, the lower
bandwidth of the finite element method is lost when block
dense matrices representing the exterior region are placed
off the diagonal of the total system matrix.

In most previous HFEM approaches the symmetry present
in both the FEM and integral equations methods was also
destroyed. Thus the system matrix did not represent a
Ritz-Galerkin solution as the domain of the testing func-
tions differs from the domain of the basis sct[Strang]. One
attempt to retain this symmetry[Jin] requires an apriori
matrix inversion before solution of the system matrix. This
method has the advantage that multiple right hand sides
can the be easily handled.

In hybrid methods tangential electric and magnetic fields
on the boundary of the FIEM mesh are used to exactly en-
force the Sommerfield radiation condition through applica-
tion of cither the Electric Ficld Integral Equation(EFIE) or
the Magnectic Field Integral Equation(MFIE). The method



employed here is a simple extension of theses previous meth-
ods. By simultancously using the EFIE and MFIIS equa-
tions when formulating the hybrid method, continuity of
both tangential electric and magnetic ficlds is uniquely en-
forced. Unlike previous approches the total systemn ma-
trix is then symmetric, which leads to computational effi-
ciencies when inverting and eliminates nearly half the un-
knowns. Also since this formulation exhibits strong non-

exterior formulations to obtain the overall system matrix.
The last of these forms is shown to produce a symmetric
matrix.

1II. INTERIOR REGION
IFINITE ELEMENT REPRESENTATION

zero diagonal terms, it lends itself to solution by pre-conditioned The internal problem under consideration is depicted in

iterative methods where only the non-zero clements are
stored. When using the Iree Space Green’s function it
is necessary that the interior fields be zero. Since ncar
a resonance this is not the case, erroncous answers re-
sult{Yuan] or the resonance can corrupt a decoupled so-
lution[Yuan/Lynch, Cwik]. Recently methods have been
proposed to avoid this problem by the introduction of a
small amount of free-space loss[Collins], and by incorpora-
tion of the Combined Field Integral Equation{Boysc].

The advantages of the symmetric approach described in
this paper include those of the previous hybrid approaches.
The mesh densitics of the internal and external regions
can in general be chosen independently, so that the num-
ber used per wavelength can be chosen in accordance with
previous experience. Here an integer ratio of the nodes of
the interior finite element mesh on the boundary to the
triangle basis functions used on the exterior boundary for
the exterior region provided a simple transition between
regions. It will be shown that when enforcing continuity of
both tangential fields, the basis set for both the external
and interior regions must be chosen correctly or symmetry
will be destroyed. The benefit of enforcing both tangential
ficlds will be demonstrated at resonance locations where it
alleviates the errors of previous methods and stabilizies the
condition number of the system.

I1I. PROBLEM IDESCRIPTION

The problem of scattering by an inhomogencous body of
revolution(BOR) is depicted in Figs. 1-3. As was discussed
in the introduction this problem has been considered pre-
viously by a number of researchers, including applications
of the hybrid finite element method to bodics of revolution
and three-dimensional bodies[Jin/Volakis, Yuan,Boyse]. In
this particular work a new formulation which results in
a symmetric set of equations will be presented. The ad-
vantages of such a formulation include a reduction in the
storage requirements for the solution of a given problem,
the complimentary advantage of the ability to solve larger
problems given a specific storage limitation, and a more ef-
ficient solution given the existence of specialized solvers for
symmetric matrices. In contrast to existing formulations
which produce a finite number of zcro diagonal terms in
the overall impedance matrix the symmetric formulation
has dominant, non-zero terms on the diagonal resulting in
a more stable matrix solution. The following subscctions
will discuss the finite element formulation of the internal
problem, the integral equation formulation for the external
problem, and three methods of combining the interior and

Fig. 2. The interior of the body is assumed to be filled with
an inhomogeneous material where the relative permitivity
¢ is assumed to be constant throughout the volume, €2, and
the relative permeability, p, is a function of both z and the
radius p, but is independent of the azimuthal angle ¢. The
finite element method is ideally suited for such a problem,
and an outline of its application to this specific problem is
the subject of the remainder of this subsecction.

Since ¢, is constant within the interior of the BOR, all
components of the clectric field are continuous within the
volume §2, and it is convenient to employ the electric field
as the unknown ficld quantity to be determined in the FEM
formulation. Maxwell’s equations lead to the well known
vector wave equation which must be satisfied by the electric
field;

V x (liv x E) —kKeE=0 1)
l'r

The method of weighted residuals may be used to solve the
above cquation. In this case we demand that

/ \ (x (l—l-v x L) — kgc,E> CEdQ=0 (2
9] tr

where E* is an approriately chosen set of testing or weight-
ing functions. Application of the divergence theorem leads
to the final form of the FEM equation;

/-—L(VXE‘)-(VXE)dQ
Q Hr
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Q .
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This is the first key equation in the development. The
functions E* are known functions, whereas E, the entire
electric field inside the body, as well as fi x H on the bound-
ary, S, are thec unknown quantitics to be determined. The
detailed expansion of (3) for the axisymmetric BOR case
here followed Wilkins et. al.[Wilkins].

1V. EXTERIOR REGION
INTEGRAL IEQUATION REPRESENTATION

For the external region we examine the equivalent prob-
lem dcpicted in Fig. 3. The BOR is replaced with equiva-
lent currents J and M which produce the true ficld outside



the body and zero field inside the body. When this is the
case J and M are related to the true electric and magnetic
fields on the boundary S as follows,

J=nxH (4)

and
E=ixM (5)

The representation for i x H given in (4) may be substi-
tuted directly into (3) thereby enforcing continuity of the
tangential magnetic field between interior and exterior re-
gions. Note that this substitution will be assumed when
referring to equation (3) in the remainder of the text.

Equation (6) links the tangential electric field representa-
tions in the interior and exterior regions. It may be tested
with an arbitrary sct of functions, J*, gencrating the sce-
ond key equation in the development,

/J‘-(E—ﬁxM)dS:O (6)
S

The sources J and M also satisfy the electric field in-
tergral equation, (EFIE), and the magnctic ficld integral
cquation, (MFIE). The EFIE is given by,

%ﬁ x M = Ef — LI + KM ()

When this equation is tested by J* we obtain;

/ (wJ’ KM 43 - 1hx M> ds
s 2

+/J‘ - L3dS

S

=/J‘ -E'dS (8)
S

The operators L and K are described in [Huddleston), and
involve the free space Green’s function. E* is the incident
electric field.

Iikewise the MFIE is given by,

-lﬁxJ:H‘—KJ——17LM 9)

2 6
When the MFIE is tested by a sct of arbitrary functions
M* the fourth key equation in the development is obtained;

/( *-KJ-—M‘-lﬁxJ>dS
s 2

1
4+ [ M*-LMdS
0 Js

- / M . H'dS (10)
s
Here H! is the incident magnetic field, and 7 is the free
space wave impedance.
-As discuessed in the Appendix, the EFIE, (8), and MFIE,
(10), contain redundant information except at speccific fre-
quencies where the cavity formed by the exterior surface

S becomes resonant. Therefore away from resonance the
use of at least one of them along with (6) and (3) provides
a unique solution to the scattering problem. In the next
subsection three formulations which involve various combi-
nations of (3),(6),(8), and (10) are developed. One of these
possible combinations is shown to be symmetric if the ex-
pansion and testing functions are chosen appropriately.

V. THREE FORMULATIONS
OF THE OVERALL PROBLEM

A. MFIE Formulation

The overall solution requires three vector equations in-
volving E, J and M. The first of these is given by the
equation for the interior region (3). Previous researchers
have used (6) as a sccond equation, and (10) as the third
cquation[Cwik].

With this sclection of equations the following system ma-
trix is generated;

ZEE BEJ 0 CE 0
BE o0 GgIM ¢’ Y={ o (11)

In forming this system (6) and (10) have becn scaled
by jwpg, for reasons which will become apparent later in
the development. In order to evaluate the matrix entrics
it is necessary to choose the expansion functions for the
unknown quantities 5,M, and J.

The nth Fourier component of the electric field in the
interior region is expanded as follows;

S b 1 S o0y 020 s
E=3 CP{e(i)™ + > Cf(i)%c’"d’ (12)
i=1

i=1

Here e4(4) is the ith nodal based vector function which
is used to expand the ¢ directed component of the clec-
tric field, e,(z) is the ith edge based vector function which
expands the components of the field normal to ¢. CF(3)
and Cf(i) are the unknown cocflicients to be determined.
Np is the number of nodes and Ng is the total number of
edges. The expansion functions are defined as

e(1) = 7(Xig1 Vediza — Aig2Vidigt) (13)
.0 .0
Vi= P'(:); + Lr (14)
and R
cp(i) = Mg (15)

where the )\; are the first-order nodal elements using lin-
car interpolation functions[Silvester].
The unknown currents J and M are expanded as follows,

Nt
I =3 (C/ (i) + C(D)g(3)) ™ (16)

=1



and
Ny )
M =" (CM(i)my(i) + C}' ()my (i) ¢ (17)
i=1
The vector expansion functions are defined below;
LT
Ji(d) = my (i) = ) (18)
and T (t)
Jol6) = mo(i) = jé= ) (19)

Here Np is the number of triangles and T;(1) is the ith
triangle function. As the previous notation suggests, the
testing functions are chosen to be the conjugates of the ex-
pansion functions in all cases. Substituting the expansions
into the appropriate equations the matrix clements may be
determined as follows;

Zap (1,7) =

Sap(i, 5) + Tap(i, ) (20)

with

Sauplisg) = / /i (V x (i) - (V x ep(i))d2  (21)

and

Toplid) = = [ Kl cptia (22)
where o« and 8 are each either ¢ or ¢.
The terms of the coupling matrices B®7 and B'¥ are

given by the contribution from (3)

BEJ(i,) = ~jwpo fs oh() js(i)dS  (23)
and part of (6)
BIE(, ) = jwpo / ) -epl@)ds  (24)

These boundary integrals relate the FEM unknowns rep-
resenting the tangential fields on the boundary to the tan-
gential fields in the exterior region along with the matrix

GJM;
GIH (i,5) = —jwpoXap(i,5)
= o / Ja)- (A x mp()dS (25
S

The matrices GMY and GMM may be written in terms
of the operator matrices L and K defined in. [Huddleston];

GM9 (i, 3) = jupo ( 2 K op,5) - 2ol 9)) (26)

and

.. jwihipe€ ..
GMM (i, 5) = L259%B 1, 6 (i, 5)
0

(27)

with
1 ifa=p0=1t

=14 —1 fla=F=¢
~j7 otherwise

(28)

The factors ¢,p and 79 appear due to a slight difference in
the choice of expansion functions relative to those used in
[Huddleston).

The source vector is given by,

VM (i) = jwpe / m? (i) - HidS
S

This completes the formulation based on the MFIE.

(29)

B. EFIE Formulation

Since the EFIE and MFIE contain the same information
it is also possible to use the EFIE, (8), as the third equation
in the formulation. In this case the system matrix has the
same form as (11). Only the last equation is modified, with
the new entries given by,

(30)

aﬂ (1 .7) letﬁcaﬁl’aﬂ("lj)

and
GMM(; oy . s Cap P 1X P 31
ap (1,7) = jwito T ap(i,9) + 2 ap(i,5) ) (31)
and the new source vector is given by,

VM) = jwpo / mi (i) - E'dS (32)
S

Next a new symmetric formulation of the problem will be

described.

C. Symmelric Formulation

The formulations based on the MFIE and EFIE have sev-
eral undesirable features. The first of these is the fact that
a zero matrix lies on the diagonal, leading to an inherently
less stable system matrix. Since GYM (3, §) # GMY (5, %) nci-
ther of the two formuations is symmetric. In this section a
simple symmetric formulation for the problem is deduced.

In the symmetric formulation the first and third equa-
tions of the MFIE formulation are retained. The sccond
cquation is modified by adding the EFIE to (6). The re-

sulting system has the form,

zPE  BEJ g cP 0
BIE gl gIM ¢l 3= VJ (33)

The matrices ZFE BEJ BIE GMJ and GMM | as well
as the source vector VM are identical to those given in the
MFIE formulation. The new second equation now gener-
ates the matrices GIM and G77, and source vector V7.
Testing the EFIE (8) with J* gives the entries of G77,

G-ahﬂ!(z:]) = jwltoeaﬂ[/aﬁ(itj) (34)



and adds the additional term to (25)
IMos . €ap .. 1 .o
Gog (4,7) = jwpo —Tm*Kaﬁ('t:J) - §Xaﬂ(1,.7) (35)
and

V(i) = jwno /S i) - Eids (36)
Due to the choice of expansion functions for J and M the
I, and X operators are symmetric, whercas the K operator
is skew symmectric[Medgyesi-Mitschang]. This guarantees
that the G block of the system matrix is symretric. Since
the I, and K opcrators were computed when calculating
cquations (25) and (26) the additional matrices needed for
the symmetric formulation requires little additional com-
putation.

In addition, the Z®¥ block is casily shown to be sym-
metric. In order to make the system matrix syminetric cou-

Iigs. 4 and 5 show the computed results for the three
scparate formulations for the ¢¢ and 00 bistatic RCS. The
sphere is excited by an incident planc wave from € = 180.0°
and ¢ = 0.0° requiring solution of the n = 4:1 harmonics.
It should be noted that in gencral it is not neccessary to
recalculate the clements of (33) for a negative index such
as n = —1 after their computation for n = 1. Ior the
computations shown here these properties were exploited
for the more computationally intensive blocks of G and
V. For Figs. 4 and 5 the frequency is chosen such that
ka = 1.0 giving a = 1.5916 mm for f = 30 Glz. For com-
parison, the Mic series expansion of the sphere was used.
For later condition number comparison all threc cascs were
solved using a full matrix LU decomposition. The symmet-
ric formulation was also solved using a iterative conjugate
gradient algorithm based on Lanczos algorithm[Golub and
Van Loan]. This symmetric solver stores only the 8,653
non-zero clements above and on the diagonal of the matrix.
The numerical integrals used in computing the matrix el-

pling matrices 37# and B®7 matrices must satisfy %7 (4, 7) =ements for the exterior region were computed by gaussian

B7E(5,4). Given the fact that j,(7) is pure real and jg (i)
is pure imaginary, this dictates that c¢¢(7) must be chosen
to be pure imaginary, and ey must be pure real in order
to gencrate a symmetric systemn matrix. Similar choices of
the finite element basis functions have been used to [Wong,
Wilkins PhD] to correctly model the null space of the curl
opcerator to eliminate spurious modes. The above choice of
Ji(3) and jg(3) can be found from similar reasoning duc to
their relationship to the total tangential electric ficlds on
the boundary.

The next scction will present a few examples of results

generated using cach of the three formulations discussed
above.

VI. RESULTS
A. The Diclectric Sphere

The first example considered is plane wave scattering
from a diclectric sphere where ¢, = 2.0. The finite cle-
ment mesh for this problem is shown in Fig. 2. This same
mesh will be used for sweeping through a fairly wide range
of frequencies. Therefore the mesh density was chosen so
that there would be a2 10 triangle basis functions on the
dielectric boundary per wavelength in the diclectric at the
highest frequency of interest(f = 82.80 G1Iz), requiring 41
boundary nodes. Using a 2 to 1 ratio of triangles to edges
on the boundary to transition into the interior region gave
= 33 nodes per wavelength and = 57 edges per wavelength
in the model at the highest frequency of interest. Therefore
more than suflicient samples were taken per wavelength at
the lower frequencies. The matrix order for the n = 0 har-
monic is 1020, consisting of 239 unknown nodal values, 705
edge values and 19 triangle basis functions in the exterior
giving an additional 76 unknowns. IFor harmonics where
n # 0, the matrix order was 1006. The difference is ac-
counted for by climination of the unknown edge values on
the axis of symmetry which are zcro for the basis functions
chosen.

quadrature.

The interior resonance location for the dielectric-filled
sphere can be found at kga = 2.744 where kg propagation
constant in the dielectric, ¢, = 2.0. Tangential edge ele-
ments were used to help eliminate spurious FEM solutions.
And because the solution did not require inversion of the
matrix Z”¥ as done by other authors[Jin,Cwik] no insta-
bilitics where introduced at interior resonant frequencies.
The results at the interior resonant frequency are shown in
Figs. 6 and 7.

B. The Diclectric Sphere at an Isrlerior Resonance

A sceond resonance, referred to as the exterior resonance
here, occurs when the interior of the body is replaced with
free space. This resonance is associated with the applica-
tion of the integral equations in the external region. It is
neeessary to examine the solution in a finite region around
the analytical resonant location of a sphere, kga = 2.744, to
account for modeling effects introduced by the scgmented
approximation to the boundary. To understand the numer-
ical stability and uniqueness of the solution in this region
the estimate of the condition number of the three solutions
was examined, Fig. 8. The condition number for the EFIE,
MFIE, and symmetric fromulations was computed for the
mesh density as previously discussed, and shown in Fig.
2, which contains 41 boundary nodes. In addition Fig. 8
also gives the condition number estimate for the symmet-
ric formulation with an increased mesh density using 61
boundary nodes which will be discussed later.

The condition number estimate is taken from the inverse
of the minimum pivot clement. The solution to the EFIE
and MI'IIS formulations is corrupted due to the onset of this
resonance. By running closely spaced frequency points, ev-
ery 25 Mllz, Fig. 8 shows that at there is a location, f =
82.80 Gllz, where the resonance causes a jump in the con-
dition number of the symmetric formulation. The results
in Figs. 9 and 10 show that the symmetric formulation also



is slightly corrupted at this location. As discussed in the
Appendix, from a purely analytical standpoint this corrup-
tion is unexpected and must be due to numerical inaccu-
racy. In order to show this the number of basis functions
on the boundary will now be increased and the calculation
repeated.

As mentioned previously, Fig. 8 also gives the condition
number for the symmetric formulation using 61 boundary
nodes. This increases the number of basis functions on
the external boundary from 10 per wavelength in the di-
clectric to 15. It was found that condtion number of this
system, when sampled every 25 MIlz, did not exhibit as
large of a condition number jump. The maximum condi-
tion number occurred at f = 82.25 GHz where the results
are shown in Figs. 11 and 12. The symmetric formula-
tion gives good agrecment and again the EFIE and MFIE
are corrupted. The symmetric formulation guarantees the
continuity of the tangential electric and magnetic ficlds as
discussed in the Appendix. Therefore increasing the num-
ber of basis functions on the boundary more explicitly en-
forces this continuity. This is more important at resonance
where the contamination due to the resonant currents can
be present. Thus for this example it was possible to remove
the resonance problem simply by increasing the sampling
density on the outer boundary.

Note that in general the condition number(with 41 bound-

ary nodes) of the symmetric formulation is one to two or-
ders of magnitude less than those of the other formula-
tions. This can be explained in part by the dominance
of the diagonal terms in the symmetric formulation and
by the preconditioning scheme used. Since all the diago-
nal elements of the symmetric formulation are non-zero, it
was found that a simple preconditioning that normalized
all the diagaonal elements to unity magnitude was sufli-
cient although others are possible[Golub and Van Loan].
In order to reduce the condition number of the EFIE for-
mulation, it was found necessary to scale the last equation
of the EFIE formulation by 1/7g.

C. The Dielectric Cylinder

To further explore the numerical stability of these formu-
lations a dielectric cylinder, €, = 2.0, a = 2.707 mm was
used. The first exterior resonance of this cylinder occurs
at f = 42.7 GHz. Using 69 boundary nodes gives 15 trian-
gle basis functions per wavelength in the diclectric at this
frequency. The matrix order for the n 3 0 modes was 1388
which consisted of 326 nodal, 930 edge and 132 triangle
basis function unknowns. Fig. 13 gives the esimate of the
condition number for the three solutions. The condition
number estimates exhibit the same bchavior as shown in
Fig. 8, with a small jump in the symmetric formulation
with the maximum occurring at { = 42.85 GHz. Iligs. 14
and 15 show the calculated RCS of these solutions com-
pared to an integral equation solution encorporating the
PMCHW formulation[[{uddleston] at f = 42.85 GHz. The
segementation of the boundary was identical for all solu-
tions.

VII. CONCLUSIONS

A symmetric formulation for scattering by inhomoge-
neous bodies of revolution has becn presented. The sym-
metric formulation reduces the storage requirments, and
allows for the use of symmetric, iterative, sparse matrix
solvers. The resulting symmetric system matrix is com-
pared to that obtained using a simple EFIE or MFIE for-
mulation. Several examples have been given to illustrate
the agcuracy of all three formulations as well as their stabil-
ity at the resonant frequencies of the body. The symmetric
formulation has also been shown to reduce numerical inac-
curacy due to exterior resonances.

APPENDIX
BEHAVIOR OF THE FFORMULATIONS
AT EXTERIOR RESONANCES

In this appendix we consider the behavior of the EFIE,
MFIE, and symmetric formulations at frequencies where
the cavity formed by the exterior surface of the BOR, filled
with free space, is resonant. In order to guarantec a unique
solution to the scattering problem the interior and exte-
rior representations for the tangential electric and magnetic
ficlds must be equal on the boundary S. In this appendix it
will be shown that this condition is not met by either the
EFIE or MFIE formulations but is met by the symmetric
formulation.

Consider first of all the EFIE formulation. In this case in
the exterior problem the tangential electric field is forced
cqual to zero just inside the boundary of the body. This
implies that cquation (6) does indced guarantee that the
tangential electric ficlds from the interior and exterior re-
gions match. This can be shown by substituting the defi-
nition for M into equation (5),

E:ﬁxM:ﬁxﬁx(E’—E'*') (37)

where E represents the clectric field from the finite element
representation and E' and E— are the electric fields just
inside (—) and just outside (+) S. The EFIE forces E~ =0
and the previous equation gives,

E=E" (38)
as required. It can be shown that when there is no exterior
resonance, forcing the tangential electric field just inside
the body also forces the tangential magnetic field equal
to zero[Yaghjian]. However, at a resonance the tangential
magnetic field is not forced to zero, and may be equal to an
undetermined amount of resonant mode current[Yaghjian).
Thus when the EFIE is used at resonance we have,

J=nx (II4 —II—) :ﬁx}{+—aJrcS (39)
where aJye, is the unknown quantity of resonant mode
current. Substituting this relationship into cquation (4)
reveals that at resonance the interior and exterior magnetic
fields may difler by an undetermined quantity of this mode
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Fig. 1. Original Problem: Scattering due to an inhomogeneous body
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